
Module 3 Implementation and Testing

Design Patterns

The pattern is a description of the problem and the essence of its solution, so that the solution may be
reused in different settings. The pattern is not a detailed specification. Rather, you can think of it as a
description of accumulated wisdom and experience, a well-tried solution to a common problem.

Pattern Elements:

1. A name that is a meaningful reference to the pattern.
2. A description of the problem area that explains when the pattern may be applied.
3. A solution description of the parts of the design solution, their relationships and their

responsibilities. This is not a concrete design description. It is a template for a design solution that
can be instantiated in different ways.

4. A statement of the consequences—the results and trade-offs—of applying the pattern. This can
help designers understand whether a pattern can be used in a particular situation.

Design Problems:

To use patterns in your design, you need to recognize that any design problem you are facing may have an
associated pattern that can be applied:

1. Tell several objects that the state of some other object has changed.
2. Tidy up the interfaces to a number of related objects that have often been developed

incrementally.
3. Provide a standard way of accessing the elements in a collection, irrespective of how that

collection is implemented.
4. Allow for the possibility of extending the functionality of an existing class at runtime.

Implementation Issues

Some aspects of implementation that are particularly important to software engineering and that are often not
covered in programming texts. These are:

1. Reuse Most modern software is constructed by reusing existing components or systems. When you are
developing software, you should make as much use as possible of existing code.

2. Configuration management During the development process, many different versions of each software
component are created. If you don’t keep track of these versions in a configuration management system,
you are liable to include the wrong versions of these components in your system.

3. Host-target development Production software does not usually execute on the same computer as the
software development environment. Rather, you develop it on one computer (the host system) and execute
it on a separate computer (the target system). The host and target systems are sometimes of the same type,
but often they are completely different.

1. Reuse:

Software reuse is possible at several different levels, as shown in Figure 7.13:
1. The abstraction level: At this level, you don’t reuse software directly but rather use knowledge of successful

abstractions in the design of your software.
2. The object level: At this level, you directly reuse objects from a library rather than writing the code yourself. To

implement this type of reuse, you must find appropriate libraries and discover if the objects and methods offer
the functionality that you need.

3. The component level: Components are collections of objects and object classes that operate together to provide
related functions and services. You often must adapt and extend the component by adding some code of your
own.

4. The system level: At this level, you reuse entire application systems. This function usually involves some kind of
configuration of these systems. This may be done by adding and modifying code (if you are reusing a software
product line) or by using the system’s own configuration interface.

2. Configuration Management:

Configuration management is the name given to the general process of managing a changing software
system. The aim of configuration management is to support the system integration process so that all
developers can access the project code and documents in a controlled way, find out what changes have
been made, and compile and link components to create a system

There are four fundamental configuration management activities:
1. Version management, where support is provided to keep track of the different versions of software

components. Version management systems include facilities to coordinate development by several
programmers. They stop one developer from overwriting code that has been submitted to the system
by someone else.

2. System integration, where support is provided to help developers define what versions of components
are used to create each version of a system. This description is then used to build a system
automatically by compiling and linking the required components.

3. Problem tracking, where support is provided to allow users to report bugs and other problems, and to
allow all developers to see who is working on these problems and when they are fixed.

4. Release management, where new versions of a software system are released to customers. Release
management is concerned with planning the functionality of new releases and organizing the software
for distribution.

3. Host – target development

Software is developed on one computer (the host) but runs on a separate machine (the target). More
generally, we can talk about a development platform (host) and an execution platform (target). A platform
is more than just hardware. It includes the installed operating system plus other supporting software such
as a database management system or, for development platforms, an interactive development
environment.
IDE (Integrated Development Environment):

• Software development tools are now usually installed within an integrated development environment
(IDE).

• An IDE is a set of software tools that supports different aspects of software development within some
common framework and user interface.

• Generally, IDEs are created to support development in a specific programming language such as Java.
The language IDE may be developed specially or may be an instantiation of a general-purpose IDE, with
specific language-support tools.

• A general-purpose IDE is a framework for hosting software tools that provides data management
facilities for the software being developed and integration mechanisms that allow tools to work
together. The best-known general-purpose IDE is the Eclipse

OPEN-SOURCE DEVELOPMENT

• Open-source development is an approach to software development in which the source code of a
software system is published and volunteers are invited to participate in the development process

• Open-source software extended this idea by using the Internet to recruit a much larger population of
volunteer developers.

• Many of them are also users of the code. In principle at least, any contributor to an open-source
project may report and fix bugs and propose new features and functionality.

• However, in practice, successful open-source systems still rely on a core group of developers who
control changes to the software.

• Open-source software is the backbone of the Internet and software engineering.

• The Linux operating system is the most widely used server system, as is the open-source Apache web
server. Other important and universally used open- source products are Java, the Eclipse IDE, and the
MySQL database management system

• For a company involved in software development, there are two open-source issues that have to be
considered:

1) Should the product that is being developed make use of open-source components?

2) Should an open-source approach be used for its own software development?

Open-Source Licencing

• Although a fundamental principle of open-source development is that source code should be freely

available, this does not mean that anyone can do as they wish with that code.

• Legally, the developer of the code (either a company or an individual) owns the code. They can place
restrictions on how it is used by including legally binding conditions in an open-source software .

• Some open-source developers believe that if an open-source component is used to develop a new
system, then that system should also be open source.

• Others are willing to allow their code to be used without this restriction. The developed systems may
be proprietary and sold as closed-source systems.

• Most open-source licenses are variants of one of three General models:

1. The GNU General Public License (GPL). This is a so-called reciprocal license that simplistically means

that if you use open-source software that is licensed under the GPL license, then you must make that
software open source.

2. The GNU Lesser General Public License (LGPL). This is a variant of the GPL license where you can write
components that link to open-source code without having to publish the source of these components.
However, if you change the licensed component, then you must publish this as open source.

3. The Berkley Standard Distribution (BSD) License. This is a nonreciprocal license, which means you are
not obliged to re-publish any changes or modifications made to open-source code. You can include the
code in proprietary systems that are sold. If you use open-source components, you must acknowledge
the original creator of the code. The MIT license is a variant of the BSD license with similar conditions.

Licence Management:

1. Establish a system for maintaining information about open-source components that are downloaded and
used.

2. Be aware of the different types of licenses and understand how a component is licensed before it is used.
3. Be aware of evolution pathways for components. You need to know a bit about the open-source project

where components are developed to understand how they might change in future.
4. Educate people about open source.
5. Have auditing systems in place.
6. Participate in the open-source community.

REVIEW TECHNIQUES

Cost of Impact of Software Defects

• Within the context of software process the terms defect and fault are synonymous. Both imply a
quality problem that is discovered after the software has been released to end users.

• The primary objective of technical reviews is to find errors during the process so that they do not
become defects after release of the software. The obvious benefit of technical reviews is the early
discovery of errors so that they do not propagate to the next step in the software process.

INFORMAL REVIEW

Informal reviews include a simple desk check of a software engineering work product with a colleague, a
casual meeting (involving more than two people) for the purpose of reviewing a work product, or the
review-oriented aspects of pair programming

A simple desk check or a casual meeting conducted with a colleague is a review. However, because there is
no advance planning or preparation, no agenda or meeting structure, and no follow-up on the errors that
are uncovered, the effectiveness of such reviews is considerably lower than more formal approaches. But a
simple desk check can and does uncover errors that might otherwise propagate further into the software
process.

One way to improve the efficacy of a desk check review is to develop a set of simple review checklists for
each major work product produced by the software team. The questions posed within the checklist are
generic, but they will serve to guide the reviewers as they check the work product

Pair Programming: Pair programming can be characterized as a continuous desk check. Rather than
scheduling a review at some point in time, pair programming encourages continuous review as a work
product (design or code) is created. The benefit is immediate discovery of errors and better work product
quality as a consequence.

FORMAL TECHNICAL REVIEW

A formal technical review (FTR) is a software quality control activity performed by software engineers (and
others).
The objectives of an FTR are:
 (1) to uncover errors in function, logic, or implementation for any representation of the software;
 (2) to verify that the software under review meets its requirements;
 (3) to ensure that the software has been represented according to predefined standards;
(4) to achieve software that is developed in a uniform manner; and

(5) to make projects more manageable.

• In addition, the FTR serves as a training ground, enabling junior engineers to observe different
approaches to software analysis, design, and implementation.

• The FTR also serves to promote backup and continuity because a number of people become familiar
with parts of the software that they may not have otherwise seen.

Review Meetings:
Regardless of the FTR format that is chosen, every review meeting should abide by the following
constraints:
• Between three and five people (typically) should be involved in the review.
• Advance preparation should occur but should require no more than two hours of work for each person.
• The duration of the review meeting should be less than two hours.

• The focus of the FTR is on a work product (e.g., a portion of a requirements model, a detailed
component design, source code for a component)

Review Reporting and Record Keeping
During the FTR, a reviewer (the recorder) actively records all issues that have been raised. These are
summarized at the end of the review meeting, and a review issues list is produced. In addition, a formal
technical review summary report is completed. A review summary report answers three questions:
1. What was reviewed?
2. Who reviewed it?
3. What were the findings and conclusions?
The review summary report is a single-page form (with possible attachments). It becomes part of the
project historical record and may be distributed to the project leader and other interested parties.
The review issues list serves two purposes: (1) to identify problem areas within the product and (2) to
serve as an action item checklist that guides the producer as corrections are made. An issues list is
normally attached to the summary report.

Review Guidelines
Guidelines for conducting formal technical reviews must be established in advance, distributed to all
reviewers, agreed upon, and then followed. A review that is uncontrolled can often be worse than no
review at all. The following represents a minimum set of guidelines for formal technical reviews:

• Review the product, not the producer.

• Set an agenda and maintain it.

• Limit debate and rebuttal

• Enunciate problem areas, but don't attempt to solve every problem noted.

• Take written notes

• Limit the number of participants and insist upon advance preparation

• Develop a checklist for each product that is likely to be reviewed

• Allocate resources and schedule time for FTRs.

• Conduct meaningful training for all reviewers

• Review your early reviews.

POST MORTEM EVALUATIONS

• Baaz and his colleagues suggest the use of a post-mortem evaluation (PME) as a mechanism to
determine what went right and what went wrong when software engineering process and practice are
applied in a specific project.

• PME examines the entire software project, focusing on both “excellences (that is, achievements and
positive experiences) and challenges (problems and negative experiences)”

• Often conducted in a workshop format, a PME is attended by members of the software team and
stakeholders.

• The intent is to identify excellences and challenges and to extract lessons learned from both. The
objective is to suggest improvements to both process and practice going forward.

SOFTWARE TESTING STRATEGIES

• Testing is a set of activities that can be planned in advance and conducted systematically.

• Software is tested to uncover errors that were made inadvertently as it was designed and constructed.

Test Strategies for Conventional Software

1. Unit Testing

• Unit testing focuses verification effort on the smallest unit of software design—the software
component or module.

• Using the component-level design description as a guide, important control paths are tested to uncover
errors within the boundary of the module.

• The relative complexity of tests and the errors those tests uncover is limited by the constrained scope
established for unit testing.

• The unit test focuses on the internal processing logic and data structures within the boundaries of a
component.

• This type of testing can be conducted in parallel for multiple components.
Unit Testing consideration:

• The module interface is tested to ensure that information properly flows into and out of the program
unit under test.

• All independent paths through the control structure are exercised to ensure that all statements in a
module have been executed at least once.

• Boundary conditions are tested to ensure that the module operates properly at boundaries established
to limit or restrict processing.

• And finally, all error-handling paths are tested
Unit Testing Procedures:

• Unit testing is normally considered as an adjunct to the coding step. The design of unit tests can occur
before coding begins or after source code has been generated. A review of design information provides
guidance for establishing test cases that are likely to uncover errors in each of the categories Each test
case should be coupled with a set of expected results.

2. Integration Testing

• Integration testing is a systematic technique for constructing the software architecture while at the
same time conducting tests to uncover errors associated with interfacing.

• The objective is to take unit-tested components and build a program structure that has been dictated
by design.

• Top-Down Integration. Top-down integration testing is an incremental approach to construction of the
software architecture. Modules are integrated by moving downward through the control hierarchy,
beginning with the main control module (main program). Modules subordinate (and ultimately
subordinate) to the main control module are incorporated into the structure in either a depth first or
breadth-first manner.

• The integration process is performed in a series of five steps:
1. The main control module is used as a test driver and stubs are substituted for all components

directly subordinate to the main control module.
2. Depending on the integration approach selected (i.e., depth or breadth first), subordinate stubs are

replaced one at a time with actual components.
3. Tests are conducted as each component is integrated.
4. On completion of each set of tests, another stub is replaced with the real component.
5. Regression testing may be conducted to ensure that new errors have not been introduced.

Bottom-Up Integration. Bottom-up integration testing, as its name implies, begins construction and testing
with atomic modules (i.e., components at the lowest levels in the program structure). Because components
are integrated from the bottom up, the functionality provided by components subordinate to a given level
is always available and the need for stubs is eliminated. A bottom-up integration strategy may be
implemented with the following steps:

1. Low-level components are combined into clusters (sometimes called builds) that perform a specific
software subfunction.

2. A driver (a control program for testing) is written to coordinate test-case input and output.
3. The cluster is tested.
4. Drivers are removed and clusters are combined moving upward in the program structure.

Regression Testing: regression testing is the re-execution of some subset of tests that have already been
conducted to ensure that changes have not propagated unintended side effects. Regression testing helps
to ensure that changes (due to testing or for other reasons) do not introduce unintended behavior or
additional errors.

3. Validation Testing

• Validation testing begins at the culmination of integration testing, when individual components have
been exercised, the software is completely assembled as a package, and interfacing errors have been
uncovered and corrected.

• At the validation or system level, the distinction between different software categories disappears.

• Testing focuses on user-visible actions and user-recognizable output from the system.

• Software validation is achieved through a series of tests that demonstrate conformity with
requirements. A test plan outlines the classes of tests to be conducted, and a test procedure defines
specific test cases that are designed to ensure that all functional requirements are satisfied, all
behavioral characteristics are achieved, all content is accurate and properly presented, all performance
requirements are attained, documentation is correct, and usability and other requirements are met
(e.g., transportability, compatibility, error recovery, maintainability). If a deviation from specification is
uncovered, a deficiency list is created. A method for resolving deficiencies (acceptable to stakeholders)
must be established.

• An important element of the validation process is a configuration review. The intent of the review is to
ensure that all elements of the software configuration have been properly developed, are cataloged,
and have the necessary detail to bolster the support activities. The configuration review, sometimes
called an audit.

• The alpha test is conducted at the developer’s site by a representative group of end users. The
software is used in a natural setting with the developer “looking over the shoulder” of the users and
recording errors and usage problems. Alpha tests are conducted in a controlled environment.

• The beta test is conducted at one or more end-user sites. Unlike alpha testing, the developer generally
is not present. Therefore, the beta test is a “live” application of the software in an environment that
cannot be controlled by the developer. The customer records all problems (real or imagined) that are
encountered during beta testing and reports these to the developer at regular intervals

4. System Testing

a. Recovery Testing: Recovery testing is a system test that forces the software to fail in a variety of ways

and verifies that recovery is properly performed. If recovery is automatic (performed by the system
itself), reinitialization, checkpointing mechanisms, data recovery, and restart are evaluated for
correctness. If recovery requires human intervention, the mean-time-to-repair (MTTR) is evaluated to
determine whether it is within acceptable limits.

b. Security Testing: Security testing attempts to verify that protection mechanisms built into a system will,
in fact, protect it from improper penetration. Penetration spans a broad range of activities: hackers
who attempt to penetrate systems for sport, disgruntled employees who attempt to penetrate for
revenge, dishonest individuals who attempt to penetrate for illicit personal gain.

c. Stress Testing: Stress testing executes a system in a manner that demands resources in abnormal
quantity, frequency, or volume. For example, (1) special tests may be designed that generate 10
interrupts per second, when one or two is the average rate, (2) input data rates may be increased by an
order of magnitude to determine how input functions will respond, (3) test cases that require
maximum memory or other resources are executed, (4) test cases that may cause thrashing in a virtual
operating system are designed, (5) test cases that may cause excessive hunting for disk-resident data
are created. Essentially, the tester attempts to break the program.

d. Performance Testing: Performance testing is designed to test the run-time performance of software
within the context of an integrated system. Performance testing occurs throughout all steps in the
testing process. Even at the unit level, the performance of an individual module may be assessed as
tests are conducted.

e. Deployment Testing: Deployment testing, sometimes called configuration testing, exercises the
software in each environment in which it is to operate. In addition, deployment testing examines all
installation procedures and specialized installation software (e.g., “installers”) that will be used by
customers, and all documentation that will be used to introduce the software to end users.

5. Debugging:

• Debugging occurs as a consequence of successful testing. That is, when a test case uncovers an error,
debugging is the process that results in the removal of the error.

• The debugging process will usually have one of two outcomes: (1) the cause will be found and
corrected or (2) the cause will not be found.

Strategies:

• The brute force category of debugging is probably the most common and least effi cient method for
isolating the cause of a software error. You apply brute force debugging methods when all else fails.
Using a “let the computer find the error” philosophy, memory dumps are taken, run-time traces are
invoked, and the program is loaded with output statements

• Backtracking is a fairly common debugging approach that can be used successfully in small programs.
Beginning at the site where a symptom has been uncovered, the source code is traced backward
(manually) until the cause is found. Unfortunately, as the number of source lines increases, the number
of potential backward paths may become unmanageably large.

• The third approach to debugging— cause elimination —is manifested by induction or deduction and
introduces the concept of binary partitioning. Data related to the error occurrence are organized to
isolate potential causes

WHITE BOX TESTING
White-box testing, sometimes called glass-box testing or structural testing, is a test-case design philosophy
that uses the control structure described as part of component-level design to derive test cases. Using
white-box testing methods, you can derive test cases that (1) guarantee that all independent paths within
a module have been exercised at least once, (2) exercise all logical decisions on their true and false sides,
(3) execute all loops at their boundaries and within their operational bounds, and (4) exercise internal data
structures to ensure their validity.

PATH TESTING

Path Testing is a method that is used to design the test cases. In path testing method, the control flow
graph of a program is designed to find a set of linearly independent paths of execution. In this method
Cyclomatic Complexity is used to determine the number of linearly independent paths and then test cases
are generated for each path.

It give complete branch coverage but achieves that without covering all possible paths of the control flow
graph. McCabe’s Cyclomatic Complexity is used in path testing. It is a structural testing method that uses
the source code of a program to find every possible executable path.
Path Testing Process:
1. Control Flow Graph: Draw the corresponding control flow graph of the program in which all the

executable paths are to be discovered.
2. Cyclomatic Complexity: After the generation of the control flow graph, calculate the cyclomatic

complexity of the program using the following formula. McCabe's Cyclomatic Complexity = E - N + 2P
Where, E = Number of edges in control flow graph N = Number of vertices in control floe graph P =
Program factor

3. Make Set: Make a set of all the path according to the control floe graph and calculated. The cardinality
of set is equal to the calculated cyclomatic complexity.

4. Create Test Cases: Create test case for each path of the set obtained in above step.

Path Testing Techniques:

1. Control Flow Graph: The program is converted into control flow graph by representing the code into

nodes and edges.
2. Decision to Decision path: The control flow graph can be broken into various Decision to Decision paths

and then collapsed into individual nodes.

3. Independent paths: Independent path is a path through a Decision-to-Decision path graph which
cannot be reproduced from other paths by other methods.

CONTROL STRUCTURE TESTING
Control structure testing is used to increase the coverage area by testing various control structures present
in the program. The different types of testing performed under control structure testing are as follows-

1. Condition Testing 2. Data Flow Testing 3. Loop Testing

1. Condition Testing: Condition testing is a test cased design method, which ensures that the logical
condition and decision statements are free from errors. The errors present in logical conditions can be
incorrect Boolean operators, missing parenthesis in a booleans expression, error in relational
operators, arithmetic expressions, and so on.

2. Data Flow Testing: The data flow test method chooses the test path of a program based on the
locations of the definitions and uses all the variables in the program.

3. Loop Testing: Loop testing is actually a white box testing technique. It specifically focuses on the
validity of loop construction. Three types of loops: simple, structured and unstructured.

BLACK BOX TESTING

• Black-box testing, also called behavioral testing or functional testing, focuses on the functional
requirements of the software.

• That is, black-box testing techniques enable you to derive sets of input conditions that will fully
exercise all functional requirements for a program.

• Black-box testing is not an alternative to white-box techniques.

• Rather, it is a complementary approach that is likely to uncover a different class of errors than white-
box methods.

• Black-box testing attempts to find errors in the following categories: (1) incorrect or missing functions,
(2) interface errors, (3) errors in data structures or external database access, (4) behavior or
performance errors, and (5) initialization and termination errors.

• Unlike white-box testing, which is performed early in the testing process, black box testing tends to be
applied during later stages of testing .

• Because black-box testing purposely disregards control structure, attention is focused on the
information domain.

• The first step in black-box testing is to understand the objects 5 that are modelled in software and the

relationships that connect these objects. Once this has been accomplished, the next step is to defi ne a

series of tests that verify “all objects. To accomplish these steps, you begin by creating a graph —a

collection of nodes that represent objects, links that represent the relationships between objects, node

weights that describe the properties of a node (e.g., a specific data value or state behavior), and link

weights that describe some characteristic of a link.

• Equivalence partitioning is a black-box testing method that divides the input domain of a program into
classes of data from which test cases can be derived. An ideal test case single-handedly uncovers a
class of errors (e.g., incorrect processing of all character data) that might otherwise require many test
cases to be executed before the general error is observed.

• Boundary value analysis is a test-case design technique that complements equivalence partitioning.
Rather than selecting any element of an equivalence class, BVA leads to the selection of test cases at
the “edges” of the class. Rather than focusing solely on input conditions, BVA derives test cases from
the output domain as well. Boundary value analysis leads to a selection of test cases that exercise
bounding values.

• Orthogonal array testing can be applied to problems in which the input domain is relatively small but
too large to accommodate exhaustive testing. The orthogonal array testing method is particularly
useful in finding region faults —an error category associated with faulty logic within a software
component.

TEST DOCUMENTATION
• Test documentation is documentation of artifacts created before or during the testing of software. It

helps the testing team to estimate testing effort needed, test coverage, resource tracking, execution
progress, etc. It is a complete suite of documents that allows you to describe and document test

planning, test design, test execution, test results that are drawn from the testing activity.
Types of Testing
Documents

Description

Test policy
It is a high-level document which describes principles, methods and all the important
testing goals of the organization.

Test strategy
A high-level document which identifies the Test Levels (types) to be executed for the
project.

Test plan
A test plan is a complete planning document which contains the scope, approach,
resources, schedule, etc. of testing activities.

Requirements
Traceability
Matrix

This is a document which connects the requirements to the test cases.

Test Scenario
Test scenario is an item or event of a software system which could be verified by one or
more Test cases.

Test case
It is a group of input values, execution preconditions, expected execution postconditions
and results. It is developed for a Test Scenario.

Test Data Test Data is a data which exists before a test is executed. It used to execute the test case.

Defect Report
Defect report is a documented report of any flaw in a Software System which fails to
perform its expected function.

Test summary
report

Test summary report is a high-level document which summarizes testing activities
conducted as well as the test result.

• The main reason behind creating test documentation is to either reduce or remove any uncertainties
about the testing activities. Helps you to remove ambiguity which often arises when it comes to the
allocation of tasks

• Documentation not only offers a systematic approach to software testing, but it also acts as training
material to freshers in the software testing process

• It is also a good marketing & sales strategy to showcase Test Documentation to exhibit a mature testing
process

• Test documentation helps you to offer a quality product to the client within specific time limits.
• In Software Engineering, Test Documentation also helps to configure or set-up the program through

the configuration document and operator manuals.
• Test documentation helps you to improve transparency with the client

TEST AUTOMATION

In software testing, test automation is the use of software separate from the software being tested to
control the execution of tests and the comparison of actual outcomes with predicted outcomes.[1] Test
automation can automate some repetitive but necessary tasks in a formalized testing process already in
place, or perform additional testing that would be difficult to do manually. Test automation is critical
for continuous delivery and continuous testing.

There are many approaches to test automation, however, below are the general approaches used widely:

1. Graphical user interface testing. A testing framework that generates user interface events such as
keystrokes and mouse clicks, and observes the changes that result in the user interface, to validate that
the observable behaviour of the program is correct.

2. API driven testing. A testing framework that uses a programming interface to the application to
validate the behaviour under test. Typically, API driven testing bypasses application user interface
altogether. It can also be testing public (usually) interfaces to classes, modules or libraries are tested
with a variety of input arguments to validate that the results that are returned are correct.

Levels: A strategy to decide the amount of tests to automate is the test automation pyramid. This strategy
suggests to write three types of tests with different granularity. The higher the level, less is the amount of
tests to write

• As a solid foundation, Unit testing provides robustness to the software products. Testing individual
parts of the code makes it easy to write and run the tests.

• The service layer refers to testing the services of an application separately from its user interface, these
services are anything that the application does in response to some input or set of inputs.

• At the top level we have UI testing which has fewer tests due to the different attributes that make it
more complex to run, for example the fragility of the tests, where a small change in the user interface
can break a lot of tests and adds maintenance effort.

TEST DRIVEN DEVELOPMENT

• Test-driven development (TDD) is an approach to program development that is based on the general
idea that you should write an executable test or tests for code that you are writing before you write the
code.

• Test-driven development relies on automated testing. Every time you add some functionality, you

develop a new test and add it to the test suite. All of the tests in the test suite must pass before you
move on to developing the next increment.

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Test_automation#cite_note-1
https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Continuous_testing
https://en.wikipedia.org/wiki/Graphical_user_interface_testing
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/API_testing
https://en.wikipedia.org/wiki/Public_interface
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/UI_Testing

The benefits of test-driven development are:

1. It is a systematic approach to testing in which tests are clearly linked to sections of the program code.

This means you can be confident that your tests cover all of the code that has been developed and that
there are no untested code sections in the delivered code.

2. The tests act as a written specification for the program code. In principle least, it should be possible to
understand what the program does by reading the tests.

3. Debugging is simplified because, when a program failure is observed, you can immediately link this to
the last increment of code that you added to the system.

4. It is argued that TDD leads to simpler code, as programmers only write code that’s necessary to pass
tests.

Test-driven development works best for the development of individual program units; it is more difficult to
apply to system testing. Even the strongest advocates of TDD accept that it is challenging to use this
approach when you are developing and testing systems with graphical user interfaces.

SECURITY TESTING

• Security testing has comparable goals. It aims to find vulnerabilities that an attacker may exploit and to
provide convincing evidence that the system is sufficiently secure. The tests should demonstrate that
the system can resist attacks on its availability, attacks that try to inject malware, and attacks that try
to corrupt or steal users’ data and identity.

• Comprehensive security testing requires specialist knowledge of software vulnerabilities and
approaches to testing that can find these vulnerabilities.

• One practical way to organize security testing is to adopt a risk-based approach, where you identify the
common risks and then develop tests to demonstrate that the system protects itself from these risks.
You may also use automated tools that scan your system to check for known vulnerabilities, such as
unused HTTP ports being left open.

• In a risk-based approach, you start by identifying the main security risks to your product. To identify
these risks, you use knowledge of possible attacks, known vulnerabilities, and security problems.

• Based on the risks that have been identified, you then design tests and checks to see if the system is
vulnerable. It may be possible to construct automated tests for some of these checks, but others
inevitably involve manual checking of the system’s behavior and its files.

• Once you have identified security risks, you then analyse them to assess how they might arise. You can
then develop tests to check some of these possibilities.

DEV – OPS AND CODE MANAGEMENT

DevOps (development + operations) integrates development, deployment, and support, with a single team
responsible for all of these activities (Figure 10.2). Three factors led to the development and widespread
adoption of DevOps:

1. Agile software engineering reduced the development time for software, but the traditional release

process introduced a bottleneck between development and deployment. Agile enthusiasts started
looking for a way around this problem.

2. Amazon re-engineered their software around services and introduced an approach in which a service
was both developed and supported by the same team. Amazon’s claim that this led to significant
improvements in reliability was widely publicized.

3. It became possible to release software as a service, running on a public or private cloud. Software
products did not have to be released to users on physical media or downloads.

• DevOps aims to change this by creating a single team that is responsible for both development and
operations. Developers also take responsibility for installing and maintaining their software.

• Creating a DevOps team means bringing together a number of different skill sets, which may include
software engineering, UX design, security engineering, infrastructure engineering, and customer
interaction.

• A successful DevOps team has a culture of mutual respect and sharing. Everyone on the team should be
involved in Scrums and other team meetings. Team members should be encouraged to share their
expertise with others and to learn new skills. Developers should support the software services that
they have developed.

CODE MANAGEMENT

• Code management1 is a set of software-supported practices used to manage an evolving codebase.

• You need code management to ensure that changes made by different developers do not interfere
with each other and to create different product versions.

• Code management tools make it easy to create an executable product from its source code files and to
run automated tests on that product

Fundamentals of source code management

• Source code management systems are designed to manage an evolving project codebase to allow
different versions of components and entire systems to be stored and retrieved. Developers can work
in parallel without interfering with each other and they can integrate their work with that from other
developers.

• The code management system provides a set of features that support four general areas:
1. Code transfer Developers take code into their personal file store to work on it; then they return it to

the shared code management system.
2. Version storage and retrieval Files may be stored in several different versions, and specific versions

of these files can be retrieved.
3. Merging and branching Parallel development branches may be created for concurrent working.

Changes made by developers in different branches may be merged.
4. Version information: Information about the different versions maintained in the system may be

stored and retrieved.
Features of Source Code Management

DEV – OPS AUTOMATION

Continuous Integration

• System integration (system building) is the process of gathering all of the elements required in a
working system, moving them into the right directories, and putting them together to create an
operational system.

• Continuous integration simply means that an integrated version of the system is created and tested
every time a change is pushed to the system’s shared code repository. On completion of the push
operation, the repository sends a message to an integration server to build a new version of the
product

• In a continuous integration environment, developers have to make sure that they don’t “break the

build.” Breaking the build means pushing code to the project repository, which when integrated, causes
some of the system tests to fail.

• The advantage of continuous integration compared to less frequent integration is that it is faster to find
and fix bugs in the system.

• If you continuously integrate, then a working system is always available to the whole team. This can be
used to test ideas and to demonstrate the features of the system to management and customers.

• Furthermore, continuous integration creates a “quality culture” in a development team. Team
members want to avoid the stigma and disruption of breaking the build. They are likely to check their
work carefully before pushing it to the project repo.

• Continuous integration is effective only if the integration process is fast and developers do not have to
wait for the results of their tests of the integrated system.

Continuous Delivery and deployment

• Continuous integration (CI) means creating an executable version of a software system whenever a
change is made to the repository.

• The CI tool is triggered when a file is pushed to the repo. It builds the system and runs tests on your
development computer or project integration server.

• Continuous delivery means that, after making changes to a system, you ensure that the changed
system is ready for delivery to customers. This means that you have to test it in a production
environment to make sure that environmental factors do not cause system failures or slow down its
performance.

• Continuous delivery does not mean that the software will necessarily be released immediately to users
for deployment.

• Continuous deployment is obviously only practical for cloud-based systems. If your product is sold

through an app store or downloaded from your website, continuous integration and delivery make
sense

SOFTWARE EVOLUTION

• The most appropriate evolution process for a software system depends on the type of software being
maintained, the software development processes used in an organization, and the skills of the people
involved

• Formal or informal system change proposals are the driver for system evolution in all organizations.

• The processes of change identification and system evolution are cyclical and continue throughout the
lifetime of a system

Software evolution process:

Change implementation:

• In situations where development and evolution are integrated, change implementation is simply an

iteration of the development process

• a critical difference between development and evolution is that the first stage of change
implementation requires program understanding.

• During the program understanding phase, new developers have to understand how the program is
structured, how it delivers functionality, and how the proposed change might affect the program. They
need this understanding to make sure that the implemented change does not cause new problems
when it is introduced into the existing system.

Agile Methods and evolution

• Agile techniques such as test-driven development and automated regression testing are useful when
system changes are made.

• System changes may be expressed as user stories, and customer involvement can help prioritize
changes that are required in an operational system.

• The Scrum approach of focusing on a backlog of work to be done can help prioritize the most important
system changes.

• In short, evolution simply involves continuing the agile development process.

SOFTWARE MAINTENANCE

• Software maintenance is the general process of changing a system after it has been delivered.
• The term is usually applied to custom software, where separate development groups are involved

before and after delivery.
• The changes made to the software may be simple changes to correct coding errors, more extensive

changes to correct design errors, or significant enhancements to correct specification errors or to
accommodate new requirements.

Types of maintenance

1. Fault repairs to fix bugs and vulnerabilities. Coding errors are usually relatively cheap to correct; design

errors are more expensive because they may involve rewriting several program components.
Requirements errors are the most expensive to repair because extensive system redesign may be
necessary.

2. Environmental adaptation to adapt the software to new platforms and environments. This type of
maintenance is required when some aspect of a system’s environment, such as the hardware, the
platform operating system, or other support software, changes. Application systems may have to be
modified to cope with these environmental changes.

3. Functionality addition to add new features and to support new requirements. This type of maintenance
is necessary when system requirements change in response to organizational or business change. The
scale of the changes required to the software is often much greater than for the other types of
maintenance

Maintenance Prediction: Maintenance prediction is concerned with trying to assess the changes that may
be required in a software system and with identifying those parts of the system that are likely to be the
most expensive to change.

Change Prediction:

• Predicting the number of change requests for a system requires an understanding of the relationship
between the system and its external environment. Some systems have a very complex relationship
with their external environment, and changes to that environment inevitably result in changes to the
system. To evaluate the relationships between a system and its environment, you should look at:
1. The number and complexity of system interfaces
2. The number of inherently volatile system requirements
3. The business processes in which the system is used

Software Reengineering

• Reengineering may involve redocumenting the system, refactoring the system architecture, translating
programs to a modern programming language, or modifying and updating the structure and values of

the system’s data. The functionality of the software is not changed, and, normally, you should try to
avoid making major changes to the system architecture.

• Reengineering has two important advantages over replacement:
1. Reduced risk There is a high risk in redeveloping business-critical software. Errors may be made in

the system specification or there may be development problems
2. Reduced cost The cost of reengineering may be significantly less than the cost of developing new

software

• The activities in this reengineering process are:
1. Source code translation: convert code to a new language
2. Reverse engineering: analyse the program to understand it
3. Program structure improvement: restructure automatically for understandability.
4. Program modularization: reorganize program structure.
5. Data reengineering: clean up and restructure system data.

Reengineering approaches:

Cost Factors:

1. Quality of software
2. Tool support available.
3. Extent of data conversion
4. Availability of expert staff.

Refactoring

• Refactoring is the process of making improvements to a program to slow down degradation through
change.

• It means modifying a program to improve its structure, reduce its complexity, or make it easier to
understand.

• Refactoring is sometimes considered to be limited to object-oriented development, but the principles
can in fact be applied to any development approach.

• When you refactor a program, you should not add functionality but rather should concentrate on
program improvement.

• You can therefore think of refactoring as “preventative maintenance” that reduces the problems of
future change.

• Reengineering takes place after a system has been maintained for some time, and maintenance costs
are increasing. You use automated tools to process and reengineer a legacy system to create a new
system that is more maintainable.

• Refactoring is a continuous process of improvement throughout the development and evolution
process. It is intended to avoid the structure and code degradation that increases the costs and
difficulties of maintaining a system.

